The Fraction Engine

An analysis of the Fraction Game Engine

Oliver Chatles (depth.of.field@gmail.com)



1 BACKGROUND

1.1 ABOUT THE FRACTION ENGINE

The Fraction Engine is my own engine.
I have created it from the ground up to
educate myself about the techniques
used with creating a game engine. The
engine is still progressing; I don’t plan to
rewrite it for as long as possible. Many
of the techniques I have learnt during
the creation of this engine have proved
incredibly valuable — so in the respect of
my goal in the engine, I feel I have
succeed already.

The engine has been designed to be
“generic” — that is, usable for most
different types of games. This generic
concept meant that I would have to put
time into different techniques, weighing-
up the pros against the cons and
choosing what I feel best suits the
engine. I also had to learn about
optimisations, things such as spatial-
partitioning, render clusters and so on.

Once I feel it is ready, I plan to release
it as open-source to the community, a
gift to everyone for all the help I have
received.

Anyway, that’s generally the background
of the engine.

1.2 ABOUT THE AUTHOR

I’'m only a 15 year old with a huge
passion for programming and computer
technology. I have never taken or
attended anything that is to do with
programming generally due to the lack
of options at my school.

Everything I know programming wise
has been taught to me by either people
over the internet, experimenting myself,
or reading a book and trying it myself.

I hope to get into the games industry, so
I designed this engine to help me get to
grasp not only with game engine

technology, but also creating a strong
object-orientated framework.

2 ENGINE STRUCTURE

2.1 OVERVIEW

Establishing a good, strong engine was
straight away top of my to-do list. 1
spent a long time learning about design-
patterns before I began work on the
engine.

I will use this section to describe some
of the things I believe stand out well in
the engine.

2.2 THE ENTITY I/O SYSTEM

This is something, I am quite proud of
and have only recently implanted. I
wanted a way for entities to interact with
each other, but without this being hard
coded or scripted. I took the basic idea
from the Source Engine entity system.
An entity can have inputs, and outputs.
Outputs are ‘fired” when something
happens. Inputs are linked into other
entity’s outputs so they can work
independently.

The diagram below (Figure 2.2.1)
demonstrates this system, with a basic
switch that opens a door.

"0On switch pressed”

Door

Figure 2.2.1 Entity IO System.

In this hypothetical example, the door
has one of its inputs attached to the
switch’s “On switch pressed” output.
The door will have attached a custom



method to this output, so that when it is
fired, the door can open.

The code for this is really simple, which
is what I think is the beauty of it. It uses
Reflection, which was a completely new
topic when I was overcoming the entity
10O problem.

Switch openDoor = new Switch();
Door doorToOpen = new Door();

EstablishConnection (openDoor,

doorToOpen, “onOpen”,“Open”);
Here we see how simple it is to create
the connection. “EstablishConnection”
takes the parameters source (who will
create the output), the destination (who
will receive the output), the output name
(simply defined as an event in the
source) and the input name (simply
defined as a method in the destination
instance).

2 RENDERING FEATURES

2.1 OVERVIEW

The visual aspect of games used to,
when I first began creating the engine,
be the most appealing to me. So
naturally, as I began the engine all sorts
of ideas came into my head for ‘cool’
graphics features. Those that have been
implanted are described in more detail
below, and the rest still remain on my
to-do list waiting to be added.

2.2 POWERFUL SCENE GRAPH

A scene graph was something that made
me “ummm...ahhh” about for quite a
while. The Fraction Engine now has a
stable scene graph were users are
required to link meshes into the graph.
This is what a basic third person camera
could look like in the engine...

= “I¥ Player Position
~? Player Mesh
= “i§ Player Position

& Camera

The scene graph nodes link well with
other systems allowing for quad-trees,
octrees and other spatial partitioning
techniques.

It also means that any object can be
assigned to a scene graph node, so they
all share a similar matrix (and position in
the world).

One final thing is the picture
demonstrating the scene graph layout is
actually taken from the engine debugger.
The debugger allows the developer to
manipulate the scene graph at run time.

2.3 SHADERS

The Fraction Engine supports Microsoft
‘Effect’ files. These files are shaders
written in a high-level C like language. It
is good because it allows programmers
to rapidly create shaders in a familiar
language.

The Fraction Engine handles shaders
incredibly well. All the user needs to do
is load a shader, apply it to a surface’s
material and... that’s it! The engine will
automatically set variables that follow
the HLSL semantics. The wotld, view,
projection, world-view-projection-
inverse-transposed matrices and more
are all automatically set which was good.

The way that the engine does this is by
looping through the variables in a
shader, on load, and gets the handles to
the variables. Then when the shader is
enabled the shader will set these handles
and if a variable with a certain semantic
does not exist in the file, then it’s not
set.

The shader’s will be able to be set as the
render-cluster mode. This is useful for
games that are highly shader based
(games that replace the fixed-function
pipeline with there own, maybe per
pixel, shader engine — for example)
making it very efficient swell.



2.4 EASY TO USE AND EXTENDABLE LIGHTING
SYSTEM
The lighting system currently uses the
fixed function pipeline, but this is so
transparent, it could easily be
transformed into shader stuff (which I
plan on doing). The lights all inherit
from a base light interface so that each
light class only has the properties it
needs.

It’s only a very extendable system, like
the volumetric light is really an
extension of point light — but it creates a
mesh as well. The volumetric mesh is
just 4 quads that fade to an alpha of 0
(per vertex alpha) — so nothing fancy.



